Quantum Layer
Simulates quantum principles for data exploration and decision parallelization.
Enables multi-state evaluation with probabilistic models.
Code Example: Quantum Layer Simulation
import numpy as np
class QuantumLayer:
def simulate_superposition(self, data):
states = np.random.rand(len(data))
return np.multiply(data, states)
# Example Usage
data = [1, 2, 3, 4]
quantum_layer = QuantumLayer()
superposed_states = quantum_layer.simulate_superposition(data)
print("Quantum States:", superposed_states)
Agent Layer
Network of autonomous agents collaborating dynamically.
Implements self-learning and task-specific expertise.
Code Example: Agent Class
class Agent:
def __init__(self, name, specialization):
self.name = name
self.specialization = specialization
def execute_task(self, task):
return f"{self.name} ({self.specialization}) executed task: {task}"
# Example Usage
agent = Agent("Agent_1", "Logistics Optimization")
print(agent.execute_task("Optimize Delivery Routes"))
Hybrid Integration Layer
Combines quantum and classical outputs into actionable insights.
Ensures interpretability and coherence.
Code Example: Hybrid Integration
class HybridIntegration:
def integrate(self, classical_data, quantum_data):
combined = [(c + q) / 2 for c, q in zip(classical_data, quantum_data)]
return combined
# Example Usage
classical_data = [10, 20, 30]
quantum_data = [12, 18, 28]
integration = HybridIntegration()
result = integration.integrate(classical_data, quantum_data)
print("Integrated Data:", result)
Reasoning Stage
Synthesizes outputs from all agents.
Uses feedback loops to refine results iteratively.
Code Example: Feedback Loop
class ReasoningStage:
def refine_results(self, initial_results, feedback):
refined = [res * (1 + fb) for res, fb in zip(initial_results, feedback)]
return refined
# Example Usage
results = [0.8, 0.6, 0.9]
feedback = [0.1, -0.05, 0.2]
reasoning_stage = ReasoningStage()
refined = reasoning_stage.refine_results(results, feedback)
print("Refined Results:", refined)
Security and Privacy
Quantum-resistant cryptography secures communications.
Federated learning ensures data privacy.
Code Example: Secure Communication
from cryptography.fernet import Fernet
class SecureCommunication:
def __init__(self):
self.key = Fernet.generate_key()
self.cipher = Fernet(self.key)
def encrypt_message(self, message):
return self.cipher.encrypt(message.encode())
def decrypt_message(self, encrypted_message):
return self.cipher.decrypt(encrypted_message).decode()
# Example Usage
secure_comm = SecureCommunication()
message = "Confidential Data"
encrypted = secure_comm.encrypt_message(message)
print("Encrypted:", encrypted)
decrypted = secure_comm.decrypt_message(encrypted)
print("Decrypted:", decrypted)